MINICOMPUTER CONCEPTS

By
BENEDiCTO SACHO
Bachelor of Science
Southeastern Oklahoma State University
Durant, Oklahoma

1973

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
July, 1976

’ dewt vy A
e B $iy,,

ey Youe
R [S3 CLPE
R e P e

&

LIBRARY

MINICOMPUTER CONCEPTS

Thesis Approved:

g petily
AN s N o S
%k%%uo 0. /7Zuﬁv%0/

77¢¢wwﬁ. /) A g

 Dean of Graddate College

953275

i1

PREFACE

This thesis presents a study of concepts used in the design of
minicomputers currently on the market. The material is drawn from
research on sixteen minicomputer systems.

I would like to thank my major adviser, Dr. Donald D. Fisher, for
his advice, guidance, and encouragement, and other committee members,
Dr. George E. Hedrick and Dr. James Van Doren, for their suggestions
and assistance. Thanks are a]sovdue to my typist, Sherry Rodgers, for
putting up with my illegible rough draft and the excessive number of
figures, and to Dr. Bill Grimes and Dr. Doyle Bostic for prodding me on.
Finally, I would like to thank members of my family for seeing me

through it all.

TABLE OF CONTENTS

INTROBUCTION o v v v v v v v v o o .

Objective . . . & . .« ¢ ¢ i e e e e e e e e e e e
History of Minicomputers

ELEMENTS OF MINICOMPUTER DESIGN . . » & + & « o v o v . .

Introduction ¢ . 0 0 e e e e
The Processor . . & v v v ¢ v v o o o o« 0 o o o o o

Organization
Operations ¢ ¢ v v v i v e e e .

The Memory . . & . v & v v v v e e e e e e e e e e
Input/Output Elements

Device Controllers ¢« v v v v « « . .
I/0 Operations ¢ v v o v v v o

GENERAL SYSTEM DESIGNS

Fixed Purpose Register Design
General Purpose Register Design
Multi-accumulator Design

Microprogramming
Stack Structures 000
Bus Structures 0 e e e e e e e
Typical System Options

MINICOMPUTERS OF THE 70'S« « .« o .« ..

Introduction o000
Fixed Purpose Register Machines

Digital Equipment Corporation PDP 8/e
Cincinnati Milacron CIP/2200
Computer Automation ALPHA LSI-2
Texas Instruments 980B ‘

iv

Chapter Page

IV. MINICOMPUTERS OF THE 70'S (Continued) 58
Multi-accumulator Machines Ce e e 58

Digital Computer Controls D-116 | 58

Data General ECLIPSE S/200 ' 58

AGenera] Purpose Register Machines 68

Digital Equipment Corporation PDP 11/40 . . . 68

Raytheon Data Systems RDS-500 72

Interdata Model 8/32 78

A Stack Machine -- The Microdata 32/S 85

The 3200 Microprocessor 86

The 32/S Architecture 86

V. SUMMARY L e e e e e e e e e e e e e e e e e 100
SELECTED BIBLIOGRAPHY v ¢ v v v v v v o v . 104

APPENDIX A - INSTRUCTION EXECUTION TIMES
(IN MICROSECONDS) « & v o v o v v o . 106

APPENDIX B - APL DESCRIPTION OF EFFECTIVE
ADDRESS CALCULATING SCHEMES 109

APPENDIX C - APL DESCRIPTION OF INTERRUPT
OPERATIONS v v o v v v v v v v v 117

LIST OF TABLES

Table Page

I. 1974 Minicomputer Shipments 5
IT. PDP 8/e Functional Characteristics 43
IIT. CIP/2200 Functional Characteristics 46
IV. ALPHA LSI-2 Functional Characteristics 51
V. TI 980B Functional Characteristics 57
VI. D-116 Functional Characteristics 59
VII. ECLIPSE $/200 Functional Characteristics 61
VIII. Memory Fault Codes ¢ v v v v v v v v v v 64
IX. PDP 11/40 Functional Characteristics 69
X. PDP 11/40 Addressing Modes 72
XI. RDS-500 Functional Characteristics 74
XII. Model 8/32 Functional Characteristics 80
XIII. Microdata 32/S Functional Characteristics 88
XIV. Addressing Modes and Effective Addresses 95
XV. Summary of Minicomputer Characteristics 101

vi

LIST OF FIGURES"

Figure -

—
-

S w

10.
11.
12.
13.
14,
15.
16.
17.
18.
19.
20.

Basic Computer Organization
Processor Organization o o
The Basic Processor Cycle « « v v v v v v o «

Machine Instructions « « ¢ ¢ v v o o o ..

Processor Organization for Fixed Purpose

Register Machines

Program for a Fixed Purpose Register Type System

Processor Organization for General Purpose

Register Machines
Programming a General Purpose Register Machine
Processor Organization for Multi-accumulator Machines . .
Program For a Multi-accumulator System
Two Types of Control Units
Stack Operations 0.
Stack Error Conditions
The Universal Bus « . . v v v v v v v v v v v
PDP 8/e Instruction Formats
CIP/2200 Simplified Instruction Formats
Variable Length Data Formats
Decimal Data Representation I
Memory Banking Example

D-116 Memory Reference Instruction Formats

vii

18

27
28

30
31
32
33
35

38
38
40
44
47
48
49
55
60

Figure

21.

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

D-116 Arithmetic/Logic Instruction Format
(NL = NoLoad) . . « v v v v v v e e e e e e e e

Error Checking and Correction Example

Specify Address Accumulator Formats

ECLIPSE S/200 Cache System

PDP 11/40 Ihstruction Formats

Automatic Priority Interrupt Structure

RDS-500 Instruction Formats

RDS-500 Dual Bus Architecture

Model 8/32 Processor Block Diagram

Register Set Numbering

Model 8/32 Instruction Formats

The 3200, 32/S, MPL Heirarchy

32/S System Configuration

Monobus Organization e e e e e

Push Stack Operation P

Pop Stack Operation e e e e e e

Memory Reference Instruction Formats

Stack Operate Instruction Formats

Branch Instruction Formats

String Descriptor

viii

60
63
65
67
71
73
76
77
79
82
84
85
87
90
92
93
95
97
98
99

CHAPTER I
INTRODUCTION
Objective

In the past decade, the minicomputer 1ndustry was no doubt the
fastest growing segment of the computer industry which to this day is
the fastest growing industry in the world (30). Since the mini-
computers first attracted the attention of end-users, much work has
been done to optimize and expand the capabilities of these machines.
Today they are powerful and versafﬁ]e, and they cover a wide range of
applications.

This paper presents a study of the concepts used in today's mini-
computer designs. It is written from the viewpoint of a computer
scientist with emphasis on logical organization. Details of circuit
designs are not pursued. The basic elements of a minicomputer are
described in Chapter II. Chapter III deals with the general system
designs and some of the more important architecture found in today's
minicomputers. Chapter IV focuses on what this author considers some
of the more interesting systems being marketed. Chapter V contains a
summary of the topics discussed, the future trends in the minicomputer
industry, and the conclusions derived from this study. Appendix A
contains a comparative chart of execution times of selected instructions
for the minicomputers discussed in the text. Appendix B and Appendix C

contain APL descriptions (8) of the effective address calculation

schemes and the interrupt systems for the same machines.

The basis for this paper comes from the 1974 survey of mini-
computers by Hobbs and McLaughlin (7). Other surveys reviewed include
“the one by Butler (2) in 1970 and Theis and Hobbs (28) in 1969.
Thompson's work (29) on developing a general minicomputer simulation
system is very much related to the subject of this paper and is

recommended for complementary reading.
History of Minicomputers

In 1963, at a time when the computer industry was just beginning
to stabilize from its fast paced revolution, the first of a new breed
of computers was delivered by Digital Equipment Corporation of Maynard,
Massachusetts (9) (30). It was}physically much smaller than the
typical computer of the time and it had just the very basic processing
capabilities. 1Its primary function was to control discrete and contin-
uous processes. New as it was, the "minicomputer" was undoubtedly
unimpressive, especially because the general trend then was to
centralize and concentrate computing power in larger and larger
machines. So the first delivery did not attract much attention, but
it did, however, set into motion a movement which was to be termed
"the minicomputer revolution" (15) (30).

The original equipment manufacturers (OEM's) were at the outset
tHe almost exclusive market for the minicomputers. They did the job
of installing the Tlittle machines into 1afge application systems
primarily for process control. Before long, however, keen end users
began noticing the price/performance benefits that the minicomputers

offered--benefits that were unavailable in the medium and large scale

computers. They began pointing to a wide variety of new applications
suitable to the capabilities of the minicomputers. Such applications
include:

* Instrumentation systems

* Automated test systems

* Data acquisition, monitor and control

* Communications control

. Tranqurtation and distribution control

* Physical science monitoring, analysis, and control

. Medicé] science monitoring and analysis

By the end of 1965, an overwhelming interest in the new minicom-
puter industry was evident (28). In that year, over 1000 units were
sold valued at approximately $25 million. The growth rate became
phenomenal. In 1968 sales including peripheral equipment neared the
$200 million mark. By 1972 over 35,000 units (54% of all computers
installed in the country) had been sold and the industry had sustained a
growth rate of over 30% per year (30). In 1975 alone world wide ship-
ments were projected to reach $1.24 billion which includes 55,400
units (14). |

What accounted for such an explosion? What made the minicomputers
so attractive? It certainly was not their processing capabilities, not
alone, anyway. Well then, what Was the characteristic that caught the
eyes of the then medium and large scale computer users? It was none
other than the "price/performance benefits", the relatively minimal
cost of owning and operating a minicomputer system. That characteristic
coupled with the fact that improvements in technology generally brought

down prices was the primary catalyst in the dynamic nature of the mini-

computer industry. In March of 1969, a survey of minicomputers by Theis
and Hobbs (28) included systems in the range of $50,000 or less. In
October'of'1970, a survey by J. L. Butler (2) included systems costing
$25,000 or less. In July of 1974, a survey by Hobbs and McLaughlin (7)
was Timited to systems costing under $10,000. So the cost of mini-
computer$ were Tow to begin with, and as technology continued to
improve, those low prices continued to decrease.

What is the current state of the minicomputer industry, that is,
what now-are the general characteristics of the minicomputers, what
are their roles in today's society, and who are the manufacturers?:

The minicomputers of today have very impressive processing
capabilities. :They are much more powerful and much more versatile than
those of the strictly monitor and process control days. A key factor
in the hardware improvements is the increased use of integrated circuits
(10). In effect, because of the microscopic nature of integrated
circuits, it is now possible to implement some of the sophisticated
processes of large scale computers within the mainframe of a mini-
computer. Inherent in today's minicomputers are three such
sophistications:

* use of general registers

* microprogramming

* interfacing through bus structures

As for the current roles of minicomputers, the applications
mentioned earlier still make up close to 84% of the total number of
applications. Of the remaining 16%, 9% consist of the more recent
implementations in businéss functions, 4% in education, and 2% in the

wide range of other applications (7) (10) (14). In the light of

today's advances, predictions state that there will be more new
applications as well as.continued size and cost reductions and
performance improvements.

As mentioned earlier, the nature of the minicomputer industry is
dynamic. This characteristic is evident when the history of mini-
computer manufacturers is examined. Hobbs and MclLaughlin (7) cite
some of the recent trends in their 1974 survey. In light of that
article, it is safe to say that today there are well over 20 manufac-

turers. Table I shows Modern Data's (14) 1975 rating of the top nine.

TABLE I
1974 MINICOMPUTER SHIPMENTS

MANUFACTURERS UNITS SHIPPED DOLLAR VALUE CUSTOMER SITES
Digital Equipment Corp 28% 33% 359
Data General 20% 13% 16%
Hewlett Packard 11% ‘ 10% 12%
Texas Instruments 5% - 5% 6%
General Automation 6% 5% 3%
Varian Data : 2% 5% : 4%
Digital Computer Controls 3% 5% o 2%
Interdata 6% 3% | 2%

Modular Computer Systems 2% 3% 3%

CHAPTER II
ELEMENTS OF MINICOMPUTER DESIGN
/ Introduction

Around 1830, an eccentric English mathematician named Charles
Babbage, concerned with improving methods of computing mathematical
tables, set forth the descripfion of a machine which he called the
Analytical Engine (6). In that description, the five most important
features included the following:

1. It has an input medium, by means of which an unlimited
number of operands and instructions may be entered.

2. It has a memory, where the operands and instructions may
be stored and later retrieved.

3. It has a calculating unit capable of performing arithmetic
and logical operations on the operands stored in the memory.

4. It has an oUtQut medium, by means of which the results of
the calculations are returned to the user.

5. It has a decision capability, by means of which alternate
. courses of action may be taken depending on computed
results. ‘ |
Today, a computer system is described in terms of the five
features listed above. Its basic organization is illustrated in
" Figure 1. One other feature added in 1947 by John Von Neuman of
Princeton is the stored program concept in which the calculating unit

does not recognize the difference between operands and instructions

since both are stored in the same form, in the same memory.

Data and Instructions
___Ii; Input l

Memory

i

T

Results
Outpu_-\\\j2§L+>

Instructions

Calculating
Unit
Decision
Results .
4 Y
Control
Figure 1. Basic Computer Organization

Minicomputers have the general features described above. When

contrasted with medium and large scale computers, their distinguishing

characteristics are:
* small physical size
* small word length

- small cost

Most minicomputers fit in a 19 x 11 x 21 inch mainframe. Their word

lengths range from 8 to 24 bits with most systems using 16 bits. The

cost of a basic system configuration including a processor, 4096 words

of memory, and a teletype generally does not exceed $10,000 (10) (26).

Although they have evolved into versatile units and have acquired some

large scale computer features, it is at present inconceivable that a

minicomputer system can actually replace a large scale computer
system. There is still a big gap between the processing capabilities
of the two classes of computers.
The descripfjon of the basic elements in a minicomputer system
follow. The main topics correspond with the three major components:
| - the processor
* the memory

* the input/output controllers
The Processor

The processor of a system is concerned with the major operations
of a computer. It may be likened to the foreman in a group of workers
who tells everyone what to do and when to do it. Thus all computer
operations are initiated by the processof and when each operation is

completed, the processor is notified.

Organization

The processor contains fdur basic e]éments:
* a set of registers

*an arithmetic/logic unit

* bus connections

* a control unit

Figure 2 shows one way these elements may be organized.

Bus 1

Bu

\\//

y

|
——

%Memow buffer registekF%E
1

1%: Accumulator FE_——VQ%

Bus 3

Program counter l‘_yp_.]

Memory address register}‘==ﬁg===?

Core memory

1

Instruction register E;g;%sssé

Other arithmetic and/or

index register(s) M=l
(if any)

Control
unit

\\//

N

Arithmetic/logic unit

Figure 2. Processor Organization

10

The Register Set. Processor registers are fast memdry units used

by the processor. Physically each register consist of a set of "flip
flops", memory devices each capable of storing one bit (binary digit)
of 1nformatjon. The number of bits that a register can store depends
~ on the word length of the system.

The functions of each register vary. In general some are used
strictly by the processor while others are accessible to the user.
Those used in today's minicomputers are described below (6) (9):

1. The program counter contains the address of the next instruc-
tion to be processed. '

2. The instruction register contains the instruction currently
being processed.

3. The memory address register contains the address of the
memory location accessed or to be accessed.

4. The memory data register contains the operand or instruction
to be stored into or just retrieved from the memory.

5. The status register or individual status indicators contain
current status information about the processor.

6. The accumulator stores operands and results of arithmetic/
logic operations.

7. The accumulator extension serves as an extended part of the
accumulator for operations requiring more than the usual
number of bits.

8. The index register is used in operand addressing.

9. The pointer register contains the address of an operand.

10. The stack pointer contains the address of "stacked" operands
or results. :

11. The general purpose register may serve any one of the above
functions. ~

The Arithmetic/Logic Unit. The arithmetic/logic unit performs

all calculations required by user programs. The unit consists of 1ogic

circuits capable of performing operations such as the following:

1

* add the contents of two registers

- logically "and" the contents of two registers

- complement the contents of a register

- shift or rotate thé contents of a register

- increment or decrement the contents of a register

Bus Connections. Data paths between the arithmetic/logic unit and

the registers are simplified by the use of data buses. In Figure 2

" note the use of three data buses. Buses 1 and 2 are input buses from
the registers to the arithmetic/logic unit. Bus 3 is an output bus
from the arithmetic/logic unit to the registers.

Control Unit. The control unit coordinates all the actions of a

computer by generating pulses to effect logical sequences. Control
units may be hardwired or microprogrammed. In the hardwired version,
the Togic sequences are built into the logic circuits of the control
unit. Thus the sequences are fixed and unalterable. The microprogram-
med version consists of a microsequencer and a control memory Which is
separate from the main memory. The microsequencer is a control unit in
itself but its operations are much more basic. It operates on micro-
programs stored in thevcontrol memory. The control sequences are thus
defined by microprograms. By changing the contents of the control
memory or by replacing the control memory with another control memory
containing different microprograms, the control sequence is changed.
The ability to be altered makes microprogrammed processors more adapt-
able to specific user heedé. See Chapter III for a more detailed

discussion of microprogramming.

12

Operations

The Basic Cycle. Processor operations involve a basic cycle of:

1. fetching an instruction from main memory

2. decoding the instruction

3. executing the instruction
Each of these operations are initiated and controlled by timed pulses
generated by the control unit.

The first control pulse begins the instruction fetch by transfer-
ring the contents of the program counter (PC) into the memory address
register (MA). Thus both registers contain the address of the next
instruction to be probessed.. The next‘pu1se gates the contents of PC
throﬁgh the arithmetic/logic unit (ALU) to be incremented and returned
to the PC. The PC now contains the address of the next sequential
instrqction. The next control pulse is a read from memory. The
contents of the location addressed by MA is transferred into the
memory dafa register (MD). So MD contains the instruction which must
be passed into the instruction register (IR) for the decoding oper-
ations. That transfer is effected by the next control pulse completing
the instruction fetch cycle.

The decode stage of the cycle feeds the contents of IR into a set
of decode logic circuits which performs a logic branch to the appro-
priate logic sequence. This logic sequence is associated with the
machine_instruction code in IR.

Suppose the machine instruction is an add operation. In the
basic minicomputer one operand is‘assumed to be in the accumulator (AC).
The second operand is taken ffom the memory location specified by the

addressing portion of the instruction word. Once the second operand is

13

fetched and placed into MD, control pulses gate the contents of AC and
MD into the adder unit of the ALU where the sum is generated and then
returned into AC. Thus the execute phase of the basic cycle is complet-
ed. The control sequence returns to the beginning where the next
instruction is fetched, decoded, and executed. An APL (8) description
of ‘the process described above is shown in Figure 3a. The symbols used

in the description are defined in Figure 3b.

—>{ MA<—PC 0
PC «<— INC (PC) 1
MD <— MIMA 2
IR «— MD 3
décode'sequence
AC <— ADD (AC, MD) AO

(a)
Legend
PC . program counter
MA memory address register
M memory :
MD memory data register
IR instruction register
ADD “ALU add function
INC ALU increment function
(b)

Figure 3. The Basic Processor Cycle

14

Interrupts. During the basic cycle, conditions requiring the
attention of the processor may arise. An overflow in the result of a
calculation, machine failure, an input/output device (initiated
earlier) ready for the processor to activate a data transfer are
examples of such conditions. The processor must be "interrupted" from
its normal sequence of operation to take appropriate actions in return-
ing the system to its normal state.

An interrupt is either internal or external. Internal interrupts
are caused by various types of error conditions, such as arithmetic
overf]ow,‘or invalid memory address. External interrupts are requests
for attention from eithervthe conventional I/0 devices or external
devices related to real time systems such as process control or lab
'experimentation.

Interrupts are monitored by the ﬁrocessor usually after the
execute phase of the basic cycle. If an interrupt is required, the
interrupting element must set an interrupt request indicator sometime
during the current processing cycle. Upon recognition of the interrupt,
the processor initiates an fnterrupt procedure by saving the "environ-
mént“ of the program being interrupted. The environment of a program
consists of the current contents of the registers and the status
indicators. At the completion of the interrupt procedure, the environ—/
ment of the interrupted program is restored and the processor continues
with that program's execution. | |

Two general methods of processing interrupts are used in mini-
computers. One of the methods uses one interrupt request line for all
possible interrupts. When an interrupt is requested, the processor

transfers to a'genera1 interrupt prdcessing sequence where it must

15

detérmine which element caused the interrupt. Once that is resolved,
the pkoéessor transfers to an interrupt sequence that services the
element that caused the interrupt.

The second method allows each interrupting element an interrupt
("vectored") address. Whenever an interrupt is granted by the proces-
sor, the next instruction executed is taken from the address associated
with the interrupt. The instruction is often a branch to the appro-
priate service routine. This method of processing interrupts is faster
and more efficient than the first method.

What happens when more than one interrupt occurs within a cycle?
Some type of a priority systeh must be established. Internal interrupts
are usually given higher priority over external interrupts. Among the
~external interrupts, real time devices with fast response requirements
are usually given top priority. Then depending on physical location
and speed, each I/0 device is given its unique priority.

Priority schemes may be programmed or hardwired (built-in). One
imp1ementation of the hardwired version requires two interruptvlines
for 1/0 processing (21). One line is used by the devices to request
interrupts. The other is used by the processor to grant interrupt
requests. The priority is determined by the order in which the grant
signal is propagated through all the devices. The device connected
closest to the processor on the grant Tine thus has the highest
priority. If two devices request an interrupt simultaneously, the
device with the higher priority receives the grant signal first there-
by not allowing the grant signai‘toireach the second device.

Effective Address Ca]cu]atiohs. ‘Instructions involving an operand

fetch from memory must deal with the minicomputer's inherent problem

16

of the short word length (10). The problem lies in trying to code

both the machine instruction and the operand address in one instruction
word. In a system with 16 bit words, if 3 bits are used for the
instruction code, then 13 bits are left for addressing the operand.
With 13 bits, 8192 words (or bytes) is the maximum number of locations
that are directly addressable. For some applications a minicomputer
system with 8192 words of memory is sufficient. Yet, there are many
more applications where 8K of memory is simply too small. And for some
of those applications, 3 bits is often not enough to code all the
necessary machine instructions.

To circumvent the problem, minicomputer designers devised a
variety of addressing schemes. One scheme divides the memory into
"pagés". The size of a page depenas on the number of bits used for the
‘address part of an instruction word. For example, if the address is 8
bits long, then the page size is 28 or 256 words. If the memory size
is say 16K words, then there are 64 pages of memory numbered from 0 to
63. With such a scheme, at least four modes of addressing are possible:

1. Direct Page-0. The effective address is taken to be the
address specified in the instruction.

2. Direct Current Page. Enough high order bits of the
program counter are concatenated with the address in the
instruction to form the effective address.

3. Relative to the Program Counter. The address in the
instruction is treated as a signed value and added to
the current value of the program counter.

4. Direct with a Page Register. ‘A separate register
provides the high order bits in the calculation of the
effective address.

The key point in the schemes described is the forming of a 16 bit

effective address which allows access to 64K of memory.

17

There are many other addressing schemes used in minicomputers.
Some of the more common ones are described below:

1. Indirect Addressing. The address specified in the
instruction contains the effective address. Some
systems have "multi-level” indirection where usually
the most significant bit of an indirect address is

~tested. If it is set then the address points another
indirect address, otherwise it points to the operand.

2. Indexing. The effective address is the sum of the
address in the instruction and the contents of an
index register.

3. Extended Addressing. The effective address is found
in the location immediately following the instruction
location.

4. Immediate Addressing. The operand is either in the
instruction itself or in the word following the
instruction.

In many systems, addressing schemes are combined. Terms such as

preindexing or postindexing refer to the combination of index and

indirect addressing. In preindexing, the indexing operation is
performed, then the indirection is considered. It is vice versa for
postindexing.

Machine Instructions. Machine instructions define the programmable

operations:of a computer. From one computer to another, the instruc-
tion sets usually differ according to their application. Generally,
machine instructions are divided into three classes:
1. memory reference
2. register operate
3. input/output
These classes of instruction are discussed in the following paragraphs.
Memory reference instructions require some type of a memory

access, either for fetching an operand or for transferring control. For

18

minicomputers, instructions of this class usually include those listed
in Figure 4a.

Register operéte instructions deal mainly with the processor
regisfers and the status indicators. There is no reference to the
memory. The entire instruction word can thus be used to specify one
or moreAregister operétions. Figure 4b 1ists the typical register |
operations.

Input/output (I/0) instructions deal with the transfer of data
and device status information between the processor and the I/0
devices. Three types of information, control, addfess, and data, may
transferred. .Control information are signals that initiates and/or
terminates I/0 operations. Address information refers to areas in the

memory in which data is transferred in or out. The data, of course,

INSTRUCTION _ ACTION
ADD Add the contents of a register and a memory location,
: place the results in the register.

AND Logically AND the contents of a register and a memory
location, place the results in the register.

1Sz Increment the contents of a memory location and skip
the next instruction if the result is zero.

JUMP Branch to a memory location and resume execution of the
program.

JSUB Store the address of the next instruction into a memory

location and resume execution of the program at the
location immediately following.
LOAD Load a register with the contents of a memory location.
STORE Store the contents of a register in a memory location.

(a) Memory Reference Instructions

Figure 4. Machine Instructions

19

INSTRUCTION ACTION
CLEAR Reset each bit 1in a register to zero.
comMp - Complement each bit in a register.
EXCH ‘ Exchange the contents of two registers.
INC Increment the contents of a register.
ROTATE Rotate the contents of a register one bit left or right.
SET Set each bit in a register to one. |
SKIP Skip the next instruction (conditional - the contents of

a register is examined).

SHIFT Shift the contents of a register one or more bits.

(b) Register Operate Instructions

INSTRUCTION ACTION
DMAIN Initialize a DMA input block operation.
DMAOUT Initialize a DMA output block operation.
INBLK Initialize a concurrent input block operation.
INPUT Input a word from a device to a register or a memory
' location.
OUTBLK Initialize a concurrent output block operation.
OUTPUT Output a word from the memory or a register to a device.
SELECT Transmit a specified function code to a device.
SENSE Test the status of a device.

(c) Input/Output Instructions
Figure 4. (Continued)

20

is the information being transferred between registers or memory
locations and the I/0 devices. Typical I/0 instructions are listed

1n'Figure 4c.
The Memory

The memory of a computer perforhs the vital function of storing
data, instruction sequences, and intermediate results of computations.
Minicomputer memories generally rénge from 1024 to 32,768 words. Their
speeds are in terms of cyc]e time, which is the time required to select
and write data into a memory location. The Cyc]e times vary from 250
to 2000 nanosecond (bi1lionth of a second). The common practice is to
manufacture memories in modules of 1024, 2048, 4096, or 8192 words.
Thus users can start with the bare minimum and as needed for system
" expansions separate modules are burchased and installed (7) (10).

Two‘types of memories are most common: magnetic core, and semi-
conductor. Core memories are the slower of the two types but they have
the distinct advantage of being non-volatile, which means their contents
are not lost when the power supply is shut off. This characteristic
coupled with the fact that core memories have, until recently, been
generally cheaper, has made‘them the primary type of memory used
today. However, with vast improvements in large scale integrations
(LSI) drastically reducing their cosf, semiconductor memories are now
considered to be serious competition for the core memories (6) (10).

Minicomputers continue to improve. In memory design, special
features such as those listed below aré becoming more common.

1. Parity logic is used for error detection and correction.

2. Memory protect logic is used for maintaining the integrity
of a system.

21
3. Scratchpad or cache memories are being used as fast (50 to
100 nsec) intermediate storage (14).

- 4. Memory modules are interleaved allowing overlapped memory
access (15). :

5. Memory banking techniques allow the use of up to 256K of
memory (15).

Input/Output Elements

Computers must havé a way of communicating with their users.
This is done through the input/output elements which include peripheral
devices such as card readers, 1line printers, tape drives, and teletype
Keyboard/printers. The devices, however, cannot communicate directly
with the processor. 'interfacing elements must be provided to bridge
the gap between the processor and the peripheral devices. These

elements are called device controllers.

Device Controllers

Device controllers vary according to the type of peripheral
devices they control. One type is used for serving devices that
transfer data serially such as a teletype keyboard/printer or a
cathode ray tube (CRT) keyboard/display. These are slow devices with
transfer rates not exceeding 30 characters per second. Another type
may be used to service a card reader with transfer rates up to 200
(80 column) cards per minute. Another type might service a line
printer with a transfer rate of'ovef 1000 (132 column) lines per
minute. Then there are those that service high speed devices such as
magnetic tabe and disc drives. Confro]]ers for these high speed devices
often bypass the processor using the direct memory access (DMA)

technique.

22

Generally a device controller is made up of two decoders. One
decodes input from device selection lines. When an I/0 operation is
required the processor must send a device code through the device
selection 1ines. A1l devices have access to these lines and each
shall compare the signals with its unique device code. The device
whose code matches those of the device selection lines then responds
according to the function specified. The function is sent by the
processor. It is decoded by a function decoder which activates the»
specified i/O operation - 1nbut/9utput of device status or input/

output of data.

I/0 Operations

I/0 operations involve some or all of the following steps (6):

1. Check to see if device is available.

2. When device becomes évai]ab]e, activate.

3. Transfer data.

4, Deactivate. |

‘The first step can be accomplished in two ways. The first method
involves a program loop where the status information of an unavailable
device is checked and»rechécked until the device becomes available.
This method is very inefficient primarily because of the processor
hold up. The second.methodiuses the interrupt facility. The proces-
sor can request an I/0 device.to enter an interrupt request as soon as
it becomes avai]ab]e.v While waiting for the interrupt request, the
processor is free to do some other computations.

The second step (activation) may not be necessary for some

devices. Teletypewriters and CRT's are usually ready to go as soon as

23

they become available. But for units such as a tape drive special
~activation processes must be performed.

The third step (transfer of data) can be accomplished using one of
three.methods:

* programmed

* buffered or concurrent

. diréct memory access
Programmed data transfers make use of an interrupt procedure fqr each
word transferred. This method is time'consuming since every word
transferred requires storage and restoration of the interrupted |
program. Buffered or concurrent data trqnsfers usually involve a‘b1ock
‘of words and require ektra hardware or microprogrammed logic. Once
initiated by a special instruction, it interrupts the processes when
it is ready for a transfer. It reads a buffer address and a wdrd
count from memory, determines the current address for the transfer,
transfers the word in or out of memory, updates the word count, checks
to see if the buffer is filled, and then returns to the interrupted
program. In this method,vthe interrupted program need not be stored
and rgstor%d, thus saving valuable processor time. The ultimate time
savef; however, involves the use of the third method, direct memory
access. In its implementation a separate processor is installed. The
DMA processor consist of enough logic and registers to make data
transférsvin and out of the memory without having to go through the
main processor. Like the buffered data transfer DMA transfers also
usually involve a block of data wo¥ds, Once initiated, the DMA
processor "steals" a memory cycle from the proceésor each time it

becomes ready to transfer a word. The main processor is not interrupted

24

but "delayed" one memory cycle. When all I/0 transfers are completed,

the device is deactivated.

CHAPTER III
GENERAL SYSTEM DESIGNS

Considerations

The design of any computer system is influenced by the applicatiors

it is intended to cover. The systems of interest in this paper are the

low cost general purpose minicomputers that are useable in the appli-

cations mentioned in Chapter I. Considerations involved in designing

such systems include the following:

1.

The system must be flexible. It must have the capability to
assume a wide variety of configurations dictated specifically

by the applications.

The system must be expandable. Structures for expanding the

memory and the I/0 capabilities mustvbe implemented in the

system design.

Designs involving the programmability of the system must be
directed at achieving maximum effectiveness with minimum
programming effort. '

If possible, designs for a new system should also be directed
at making the system compatible with earlier models. The
software developed for the earlier models can thus be
executable in the new system.

General Processor Designs

Processor operations generally involve information transfers to,

from, and among the processor registers. The organiiation of the

processor registers thus dictates the types of instructions that are to

be included in a system's instruction set. In minicomputer systems,

there are three general processor designs. The three designs are

correlated to the type of programmable registers used. These three

25

26

types are fixed purpose registers, multi-accumulators, and general
purpose registers. Systems with fixed purpose registers make use of
single operand address instructions. Those with mu]ti-éccumu]ators~use
double registef dperands. Systems with general purpose registers also
‘use double operands, but the operands do not have éo represent contents

of registers.

Fixed Purpose Register Design

Miﬁicomputers employing fixed purpose registers represent the
basic, less sophisticated systems found in dedicated applications such
as industrial process control, communications, and peripheral proces-
sing'for.larger computers. Systems belonging to this class of mini-
computers include: |

* Cincinnati Milacron CIP/2200

* Computer Automatidn ALPHA LSI-2

* Digital Equipment Corporation PDP 8/e

+ Texas Instruments 980B

+ Varian Data Machines VARIAN 520/1

Figure 5 is a simplified block diagram of the processor organiza-
tion for this c]ass of minicomputers. As shown, the programmable
register set includes an accumulator, an accumulator extension, and an
index register. Some systems, however, may not have all three
registers. The PDP 8/e, for example, does not have an index register.
The ALPHA LSI-2 does not Have an accumulator extensiqn. Then there are
systems that have all three’of those registers plus éome others. The
TI 980B has,‘in addition, a base registef and a subroutine linkage

register.

27

> MEMORY DATA
ACCUMULATOR
MEMORY , REGISTER
- \

.| MEMORY ADDR INSTRUCTION ACCUMULATOR
”| REGISTER REGISTER EXTENSION

PROGRAM INDEX

COUNTER REGISTER

Figure 5. . Processor Organization for Fixed Purpose Register Machines

Fixed purposé register systems are often referred to as single
address machines. The implication comes from the use of one operand
in each of the memory reference instructions. Figure 6 shows how such
instructions are used in summing an array of values. The first instruc-
tion clears both the accumﬁ]ator and the index register. The second
instruction begins the summing Toop. It instructs the system to add
into the accumulator the contents of the memory location specified by
the sum of the index register and the address value associated with
ARRAY. The first time through the ‘1oop, the index'register is zero, so
the value added into the accumulator is 10. The next instruction
increments the contents of the index register. Thus the next value to
be added into the accumulator is taken from the address ARRAY + 1'wh1ch
- contains the value 25. The ISZ instruction increments the contents of

COUNT from -4 to -3. Since COUNT is not zero the next instruction (JMP)

28

Mnemonic Code Meaning

OPR CLA, DTX Clear the accumulator and deposit to the index
register. ‘

LOOP ADD X ARRAY Add a memory value into the accumulator.

OPR INX Increment the contents of the index register.
1Sz COUNT Increment memory value and skip if the result
is zero. _ :
VJMP LOOP Branch back to process the next value.
OPR HALT Terminate execution.
COUNT DC -4 Define constants.
ARRAY DC 10
0C 25
13
DC 75
SUM DS Define storage.
END

Figure 6. Program for a Fixed Purpose Register Type System

returns control to the instruction labeled LOOP. The value of 25 is-
taken from memory and added into fhe accumulator to form the new |
accumulator contents of 35. The process of incrementing the index
register and the negative counter is repeated. Since the counter
contains a -2, the third value 13 is added into the accumulator making

the sum 48. The program loops back for the last time to add the fourth

29

value 75. When the ISZ instruction is executed this time the counter
becomes zero, thus fhe JMP instruction is skipped. The STO instruction
stores the contents of the accumulator into the memory location assoc-
jated with SUM. The OPR HALT instruction terminates the execution of

the program.

General Purpose Register Design

If the systems with the fixed purpose register design represent
one end of the spectrum of minicomputers, then the other end is
represented by the systems with the general purpose register design.
Minicomputers in this class are geared for applications involving .
complex operations such as multi-tasking.: For example, one of these
systems may be used to automate industrial processes, monitoring and
controlling multiple operations in real-time while simultaneously
preparing and printing production reports for management. The fo]iow-
ing are a few of the minicomputers belonging to this class of computers:

* Digital Equipment Corporation PDP 11/40 .

* General Automation SPC-16

* Interdata Model 8/32

" Lockheed SUE

* Modular Computer Systems . M@DCOMP I1I

* Raytheon Data Systems RDS-500

+ Texas Instruments 9608

The processor organization of a system with a general purpose
register design is shown in Figure 7. The programmable register set
consists of eight general purpose registers numbered 0 to 7. Each of

those registers can function as accumulators, accumulator extensions,

' 2
5 Memory Data
Memory Register
A
Memory Instruction
Address Reg. Register

N

Program
Counter

GPR

30

GPR

N4

GPR

GPR

Y

GPR

Y

GPR

GPR

GPR

Figure 7. Processor Organization for General Purpose Register Machines

index registers, and operand pointers.

The programming example in Figure 8 illustrates how the general

- purpose registers are used. Like the program in Figure 6, it sums an

array of values. Note the use of double operand instructions in which

the operations are considered to be register-to-register or register-

to-memory.

31

Mnemonic Code Meaning
SR 2,2 clear register 2
LR 3, 2 clear register 3
LOOP ADD 2, ARRAY(3) add into register 2 the value in the

location specified by the sum of
register 3 and the address of ARRAY

INC 3 increment register 3

COM 3, COUNT compare the contents of register 3 and
location COUNT

BLT LOOP branch to loop if register is less than
the memory value

STO 2, SUM store the accumulated sum into the
location SUM

HALT terminate execution

Figure 8. Programming a General Purpose Register Machine

Multi-accumulator Design

The mu]ti-accumd]ator design is a combination of the previous two.
designs. Operations in systems with this design are generally centered
arodnd fouf accumulators, two of which can be used as index registers.
Systems implementing this design include:

+ Data General NOVA Computer

. Data‘General"ECLIPSE Computer

. Digita] Computer Controls D-116

32

The organization of a system with a.multi-accumulator design is
shown in Figure 9. Of the four programmable registers, the first two
are used strictly as accumulators, the other two are used as accumu-

lators or index registers.

: MEMORY DATA »
MEMORY | REGISTER ACC 0
ACC 1
MEMORY ADDR INSTRUCTION ACC 2
REGISTER REGISTER or INDEX REG
| ‘ . ACC 3
PROGRAM | : ,‘ or INDEX REG >
COUNTER

Figure 9. Processor Organization for Multi-accumulator Machines

The multi-accumulator design is an attempt at implementing a
general purpose register design with the use of a minimum number of
registers. In this design, there are only five memory reference

instructions and these five do not inc]ude'arithmetic/logic operations.

The five instructions are:
load
store

Jump -

Jump subroutine

33

increment and skip if zero

A11 arithmetic/logic instructions are one cycle register-to-register

instructions (they do not address memory). The extra instruction word

bits can be used for other functions such as specifying a rotate of the

resulting register and/or a conditional skip of the next instruction.

Menmonic Code

Meaning

SUB

MOV

- LDA

LOOP LDA

ADD
INC

INC

JMP
STO

HALT

0,0

2,0

3, COUNT

1, ARRAY, 2

0,1

2, 2
3, 3, SZR

LOOP
0, SUM

Clear accumulator 0.

Clear accumulator 2.

Load the negative count into ACC 3.
Load the value at the address specified
by the sum of ACC 2 and address ARRAY
into accumulator 1.

Add the contents of register 0 and
register 1. Place the result in
register 0.

Increment index register 2.

Increment negative counter in register
3. Skip next instruction if zero.

" Branch to instruction labeled LOOP.

Store the contents of register 0 into -
memory location associated with SUM.

Terminate execution.

Figure 10.

Program For a Multi-accumulator System

34

Figure 10 illustrates the use of some of those instructions. The
algorithm for summing an array of values is used again for comparison3
One might note that an extra load instruction had to be used since the

ADD instruction does not reference memory.
Microprogramming

The concept of microprogramming as formulated by Professor M. V.
Wilkes of Cambridge University (13) was incorporated into the design of
minicomputers around 1970. The primary reasons were to give mini-
computers added flexibility and to allow them to perform more sophis-
ticated operations. The first large scale implementation of
microprogramming was in the IBM 360 family of computers introduced in
1964 (6). One of the primary reasons for the implementation was to
permit reasonably efficient emulation of earlier IBM computers for which
the customer software had been developed. Needless to say, the
microprogramming technique became a valuable marketing tool and it
contributed greatly to the success of the new IBM computers.

The microprogramming'concept is illustrated in Figure 11 along with
the diagram for a non-microprogrammable machine. Note that the two
architectures are identical except for the control unit. In effect, the
same sequence-of control pulses are generated by both versions. It is
the means by which the control signals are generated that is different.

The microprogrammed control unit consists of a read only memory
(ROM), a microaddress register (MAR), a microinstruction register (MIR),
a microsequencer, and a network of decoding logic. The microsequencer
acts as the contrd]ling element in a microprogrammable control unit.

The,read only memory contains the microinstructions. The microprogram-

35

_—> Memory
Control
T~ signals
/
Hard-wired MA MD
control unit \\S
Logic
——> \\\\s units
Input
signals
3 IR AC PC
(a) Hard-Wired Control
Read-only
memory Memory
////” Control
MAR ,;///7 signals
Decodjng | | VA VD
logic —
MIR \\ |
Logic
_— \\ /7 units
Input TE -1. |
signals se1522;er
— q T PC

AC

(b) Microprogrammable Control

Figure 1. .Two Types of Control Units

36

ming cycle begins by reading into MIR a microinstruction from é ROM
word specified.by the contents of MAR. From MIR the microinstruction

is decoded to produce one of two actions--generate pulses for register
transfers or modify the contents of MAR. The modification of MAR causes
a microsequence branch. If a microsequence branch is not effected then
the next microinstruction to be executed is read from the ROM word
immediately following the ROM word of the current microinstruction (6).

An important feature in microprogramming is the ability to specify
many different operations within a micrbinstruction word. As a matter
fact, microinstruction word lengths are often longer than the word |
length of the main‘memory. This feature is useful in overlapping
processor operations to save time.

One of the most 1hportant observations in microprogramming is the
fact that the functions of the microprogrammable control unit are
- defined by the micrdprograms stored in the ROM. To meet different
application requirements that dictates different control unit functions,
one needs only to replace the microprograms. Thus microprogramming is
advantageous in applications that require:

1. Implementation of large, sophisticated instruction set with

a relatively simple processor.

2. Emulation of different computers with different designs for

different applications.

3. Implementation of complex operations such as multiply/divide,

floating point processing, and input/output.

Many of today's minicomputer systems empToy a microprogrammed or
microprogrammable control unit. In the Cincinnati Milacron CIP/2200,
complex decimal number manipulation instructions including "edit and
mark" and "translate and test" are implemented. Hewlett Packard 21MX

and Data General ECLIPSE S/200 allows for customized instructions and

subroutines through a writeable control store feature separate from the

37

ROM of the control unit. One computer company, Microdata, manufactures
only microprogrammable machines. The products include MICRO 800, MICRO
1600, and MICRO 3200. An interesting "firmware" (microprogram) develop-
ment by Microdata is the MICRO 32/S. It is a MICRO 3200 processor
microprogrammed to emulate a stack machine (11). The system is diséussed

in more detail in Chapter IV.
Stack Structures

A useful special-purpose feature incorporated in many of the
current minicomputers is a push-down storage unit, sometimes called an
LIFO (1ast-in—first-out) list, or a stack. A stack is considered to be
a list storage structure in which data items are inserted and deleted
from one end on]y; Its use ranges from evaluation of arithmetic
expressions to 1mp1ementation of high level languages (11). The primary
“advantage inVUSing a stack structure is its ability to allocate and
deallocate storage locations dynamically.

A stack structure is analogous to a stack of cafeteria trays
where the last tray placed on top 6f the stack is the first to be
removed. Thus there are two major operations involved in a stack
structure, "push”.a data item onto the top of the stack and "popf a
data item from the top of the stack. These operations are illustrated
in Figure 12. Error conditijons ﬁstack overf1owf and fstack Underflowf
are illustrated in Figufe 13. |

Generally there are three levels of stack structure implementations
in minicomputers. The first Tevel of implementation involves automatic
saVing'and restoring of ehvirdnménts"in,Subroutine and interrupt proceg-

sing. In the Cincinnati Milacron CIP/?ZOO it is called the control

38

1000 A 1000] A
1001 B <— top of 1001 B top of
1002 -- stack 1002 | C <— stack
1003 - 1003 | -
(a) Push Data C into Stack
1000 A 1000] A — .
1001 B <«—top of 1001 | - top of
1002 -- stack 1002 | -- stack
1003 —- 1003 -
(b) Pop Data B. from Stack
Figure 12. Stack Operations
Stack Base = 1000 Stack Length = 5
top of
) stack
1000 A 1000 -
1001 B 1001 -
1002 - c 1002 | --
1003 D 1003 | -
1004 E |« top of 1004 | --
] stack |

(a) Overflow Condition (Push) (b)\Underf]ow Condition (Pop)

Figure 13. Stack Error Conditions

39

stack facility (3). The user has no direct access to the facility.

The second level of implementation is user oriented. The user can
define and manipulate his own stacks through special stack manipulating
instructions. The facility is considered to be an added feature. Such
a faci]jty is implemented in the ALPHA LSI-2 (19) and ECLIPSE S/200 (22)
computers. The third level of implementation involves a completely
stack oriented system. In such a system the machine instructions are
specifically designed to manipulate stacks. The Microdata 32/S (11) is

an example of such a system.
Bus Structures

As microprogramming has contributed to the flexibi]ity and useful-
ness of minicomputer systems, the use of bus structures has provided
ease in the interfacing of a large number of peripherals, memory éxpan-
sion and in some casés multiprocessor operations. Specifically the
use df a universal bus has become very popular among minicomputer
manufacturers. Just to name a few, the Computer Automation ALPHA LSI-2
has its MAXIBUS, the PDP'8/e-has its OMNIBUS, the PDP 11/40 has its
UNIBUS, Lockheed Electronics SUE system has its INFIBUS, and the
Raytheon Data Systems RDS-500 has its SUPERBUS I and SUPERBUS II.

Figure 14 illustrates the relationship of a universa]ibus with its

system components. In effeét, the universal bus provides the communica-
| tion 1ink from one system component to another. Thus it is made up of
communication lines with each]1he used for one of three types of

signals -- address, data, or control.

40

Processor Memory

T %

Universal Bus
L S

DMA 1/0
Processor Controller

"Figure 14. The Universal Bus

The address lines are used by the’processor and DMA controllers.
The processor uses them to send device and function codeé. DMA
controllers use them to address memory locations for I/0 data transfers.»

The data lines are shared by the processor, memory, and all I/0
controllers. The processor uses them to read data from dr write data
into the memory. It also uses them for transferring data to and from
the I/0 controllers. The DMA controller uses them to fead data from or
write data into memory. Al11 other I/0 contrb]]ers use them to convey
their unique interrupt addresses during interrupt processing.

The cdntro] Tines are used by the processor to effect specific
actions involving the memory and/or the I/0 controllers. These lines
can be subdivided 1nto’four cétegories -- 1/0 éommands, utility signa]é,
interrupt signals, and DMA signals. 1/0 command signals define the type
of 1/0 operation (input, output, etc.) to be processed. Utility signals

are used by the processor in resetting system status during a power-up

41

procedure. The interrupt signals are associated with interrupt requests
by the I/0 devices and the interrupt processing that follows. The DMA
signals are used for DMA interrupt priority signal propagation, DMA bus

acquisition, and processor grant of DMA bus control.
Typical System Options

When an application requires more proéessing capabilities than
what the standard equipment can offer, the user is usually made aware
of the optional equipment. For the scientific applications where there
is extensive use of mathematical computations, desirable options include
the hardware mu]tip]y/diviaeAand the floating point processor. These
two greatly improve the speed of mathematical routines where the
multiply/divide and floating point operations are normally done by slow
software routines. Where power failure becomes a critical event, the
power fail/restart option could be purchased to avoid disasters. rThis
special option monitors the voltage levels in a system. When a voltage
level drops below the normal operating level, an interrupt procedure
saves the status of the current program in the noh-vo]ati]e core memory.
“When the voltage Tevel is restored, the restart procedure reloads the
interrupted program. The normal processing operations are then reacti-
vated at the point where the interruption occured. Where applications
invo]?e real world timing intervals, é real-time clock option is often
necessary. Computer procedures may‘then‘monitor the clock and perform
time-related operations. The options that have been discussed are the
more typicaT options offered by tbday's minicomputers. Each system has
its own set of options. Some may even offer some of the optidns

described above as standard equipment.

CHAPTER 1V
MINICOMPUTERS OF THE 70'S
Introduction

In this chapter, the system designs;of ten of today's minicomputers
are examined. Of the ten, four hdve fixed purpose registers, two have
multi-accumulators, and three have general purpose registers. The last
minicomputer has a specialized design implemented through microprogram-

ming.
Fixed Purpose Register Machines

Digital Equipment Corporation PDP 8/e

The first PDP 8 model was introduced in 1964, a year after its
predecessor, the PDP 5, hit the market (20). Through the years, the
PDP 8 series has proven itself to be one of the host successful Tine of
minicomputers, The primarykreason'fof its success is the preservation
of the original instruction set (10). The succeeding models were thus
1compatib1e with the earlier models allowing users to develop a massive
amount of general-purpose and app]i;ation software. It is no wonder
that today in 1976, the PDP 8/e, with its‘seeming1y obsolete 12-bit
design, is still a very serious competitor for the overwhelming 16-bit

systems because of the large and valuable software inventory.

42

43

The functional characteristics of the PDP 8/e are 1i§ted in Table

II. The instruction formats are shown in Figure 15. There are five

two-cycle memory-reference instructions with one level of indirect

addressing possible, and eight memory locations on page-0 serving as

TABLE II

PDP 8/e FUNCTIONAL CHARACTERISTICS

Features

Characteristics

Processor v
Programmable Registers

Control Unit
Instructions
Memory Reference
Register Operate
Interrupt
Addressing
Direct
Current page
Indirect
Interrupt System

Memory
Word length
Cycle time
Capacity
Minimum
Maximum
Increment
Parity

Input/Output
Maximum number of devices
Programmed
Direct memory access

Universal Bus

1 accumulator

1 accumulator extension
hardwired

34

6

20

8

128 words

128 words

4096 words o
polling (1 interrupt line)

12 bits
1200 nsecs (core)

4096 words

32,768 words

2096 or 4096 words
option

60 :
10 characters/sec
833 K words/sec

96 lines (bidirectional)

44

autoindex (automatic incrementing) registers. The processor has one
accumulator and a temporary storage register whose contents can be
transferred to and from, or exchanged with the accumulator by one-cycle
instructions. Up to 512 I/0 instructions are possible with the use of
a single-level interrupt system. A DMA processor allows data transfer
within one memory cycle or three memory cycles if the transfer is just

one of a block transfer (10) (20).

0 1 2 3 4 5 6 - 7 8 9 10 11

T T T T ! ! !

T
OP-CODE ' PAGE ADDRESS BITS
] 1] | i 1
ADDRESS MODE BIT —2& ~ ™ ppagE BIT
= DIRECT @ = PAGE P
1 = INDIRECT 1 = CURRENT PAGE

(a) Memory Reference Instruction Format

0 1 2 3 4 5 6 7 8 9 ; 10 11

T T T T T T
GROUP SPECIFICATION MICRO INSTRUCTIONS 1 GS
1 1 1 1 | 1 [l i
Bits Group 1 Group 2 Group 3
0-3 1110 111 . 1111
4 Clear AC Clear AC Clear AC
5 Clear Link Skip on AC 0 AC ext into AC
6 Complement AC Skip on AC=0 m—————
7 Complement Link Skip on Link 0 AC into AC ext
8 Rotate Right Reverse Skip Logic =------
9 Rotate Left Logical OR =—-----
10 ‘Byte Swap Halt = emeeaa
11 Increment AC 0 ' 1

(b) Register Operate Instruction Format

Figure 15. PDP 8/e Instruction Formats

45

Cincinnati Milacron CIP/2200

The Cincinnati Milacron CIP/2200 is a general purpose, byte
oriented minicomputer employing a microprogrammed control unit (3).

It has an extensive instruction set including binary arithmetic,
decimal arithmetic and character manipulation. The functional
‘characteristics are listed in Table III. The instruction formats are
shown in Figure 16.

The CIP/2200 has an 8-bit hardware data path and memory. The CPU
registers, however, are 16 bits in length. The instruction set
includes a complete set of 16 bit register-to-memory and register-to-
register binary arithmetic instructions. In addition, variable length
binary arithmetic on 8, 16, 24, or 32 bit operands are possible.
Another group of instructions provides memory—toémemory decimal arith-
metic and character string move and compare, code conversions, and
decimal editing.

The CIP/2200 I/0 structure consists of a microprogrammed serial
I/0 interface, a byte I/0 facility, a microprogrammed facility for
concurrent transfers, and up to two independent DMA processors. The
- serial I/0 interface controls a teletype or other similar terminal
devices. The byte 1/0 faci]ity transmits 8-bit data between one of 32
peripheral devices and either a register or a memory lTocation. The
‘microprogfammed Direct Memory Channel (DMC) for concurrent transfers
allows a maximum transfer rate of 86,000 bytes per second concurrently
operating with program execution. The independent DMA processors
compete with the CPU for access to main memory and have a maximum

transfer rate of 909,000 bytes per second.

TABLE III

46

CIP/2200 FUNCTIONAL CHARACTERISTICS

Features

Characteristics

Processor
Programmable Registers

Control Unit

Instructions
Arithmetic
Memory moves
Register change
Shifts

String manipulation

Control transfers
Interrupt-
I/0
-Immediate
Addressing
Direct
Indirect
Indexed
Extended
Immediate
Relative

Interrupt System
Type
Internal
External

Memory

Word length

Cycle time

Capacity .
Minimum
Maximum

Increment
Parity

Protect
Read Only Memory

1 accumulator

1 accumulator extension
1 index register
microprogrammed

14 (binary and decimal)
3 o

41
12
6
19
13
8
7

256 words

32,768

32,768

32,768 ,

1 - 4 bytes in instruction

128 behind - 127 ahead of
program counter

vectored with priority
6 lines
1 line (64 signals)

16 bits
1.1 nsecs (core)

8192 words

32,768 words

8192

optional with 9 bit/byte
memory

optional

1536 words used for teletype
controls, bootstrap loader
concurrent block 1/0,
instruction set extension

TABLE III (Continued)

47

v Features

Characteristics

Input/Output

Maximum number of devices
Maximum transfer rates

Serial I/0
Byte I/0 .
Concurrent block

Direct memory access

32

110 bits/sec
10,000 bytes/sec
86,000 bytes/sec

910,000 bytes/sec

Control and Reg. oper. | OPCODE l

Conditional skip
Shift

I1/0 (register)

1/0 -(memory)

Memory immediate
Memory to Memory
Memory to Memory ext.
Memory feference‘

Memory reference ext.

Literal‘

Figure 16.

(OPCODE | DISPL
OPCODE | COUNT

OPCODE | FUNC | DEV

OPCODE |FUNC | DEV |[X | ADDR

OPCODE | DATA |X | ADDR

OPCODE |LENGTH |X | ADDRp |X | ADDRg
OPCODE | DATA |LEN |Xx | ADDRp |X | ADDRs
OPCODE | ADDR

OPCODE k ADDR

| OPCODE. 1-4 data bytes

CIP/2200 Simplified Instruction Formats

48

The use of microprogramming in CIP/2200 has allowed instructions
of considerable power and flexibility to be implemented. "Edit and
mark" and "translate and test" are two such instructions. If more
specialized instructions are needed, the writeable control store (WCS)
feature of CIP/2200 may be used. The user may use special instructions
provided by CIP/2200 to transfer to user written application micro-
programs residing in the WCS.

Vériab]e Length Binary Arithmetic. Special variable word length

instructions perform binary arithmetic on one, two, three, or four

bytes of data. This is useful for character operations, single byte

arithmetic, and extended precision arithmetic on 24 or 32-bit quantities.
Variable word length instructions use two operands, one in the

accumulator (A) - accumulator extension (B) pair and the other in memory.

For each operation a special word length indicator (WL) must be set to

the desired length. Figure 17 shows which bytes of the register are

WL Accumulator Accumulator Extension
High Byte | Low Byte High Byte | Low Byte
1
2
Memory
Operands
3
4

Figure 17. Variable Length Data Formats

49

involved for each word length. The variable length operations are
described below:
' 1. set/reset the word length indicator
load/store variable word length data
add/subtract variable word length data
AND variable word Tength data

[S2 TN~ B S A

add/subtract word length to/from index register

Decimal Arithmetic. Decimal numbers are represented as strings of
ANSCII decimal digit characfers in varying lengths from 1 to 16 digits.
Each digit is represented in memory as one byte. The first four bits
contain digit zone, the last four contain the decimal digit Va]ue. The
digit zone of the least significant digit contains the sign of the
decimal number. A minus sign is an all zero digit zone pattern, the
plus sign is a 1011 digit zone pattern; Examples are shown in Figure 18.
Decimal operations include add, subtract, multiply and divide. The two

operands reside in memory and the result replaces one of them.

Decimal Number Machine Representation
1234 [TOTTOO00T [T0TT00T0 [TOTTOOTT [10170700]
-5678 1011010 0 0 011 00001000

Figure 18. Decimal Data Representation

50

The Control Stack Facility. The CIP/2200 uses a control stack to

implement state switching where the saving and restoring of computer
state information are required in operations such as interrupt proces-
sing and subroutine linkage. The state information consists of the
contents of the accumulator, the accumulator extension, the index
register, the program counter, and all status indicators. The stack
mechanism is based on the "Last In First Out" (LIFO) technique. Each
entry in the control stack consists of a complete set of state infor-

' mation. The most recently saved set is at the "top" of the stack, the
oldest at the "bottom".

In normal useage, each subroutine saves the machine state
immediately after being called. The information is restored when the
subroutine executes a return to the calling program instruction, when
there are more than one level of subroutine processing, the control
stack has an entry for each of the subroutine calls. As the successive
returns are exeéuted, corresponding entries are "popped" from the top

of the stack.

Computer Automation ALPHA LSI-2 |

Tﬁe ALPHA LSI-2 computer is.a package product of an integrated
family of compatible components including two central processors, three
kinds of memories, and a wide variety of device controllers (19).
Through the imp]emenfation of a univeksa] bus (the MAXIBUS), the user
can’mix memories of varying speeds, sizes, and technologies with either
‘of the two processors (which differ in speed and performance) and the
necessary I/0 devices to obtain the best price/performance margin for

his purposes. The ALPHA LSI-2 package includes the LSI-2 processor

51

which is the faster of the two. The functional characteristics are
listed in Table IV. Spécial'features are discussed in the following

sections.

TABLE IV
ALPHA LSI-2 FUNCTIONAL CHARACTERISTICS

Features Characteristics

Processor ,
Programmable Registers 1 accumulator
v 1 index register also used as the

~accumulator extension

Indirect (Post Indexing)
Immediate

Interrupt System

Internal
External

Control Unit hardwired
Instructions 188
Memory Reference . 30 (standard hardware mult/div)
Immediate ' 10
Stack 15
Register Change 52
Shifts ' 16
Control : 20
Interrupt 12
Input/Output 33
Addressing '
Direct 256 words
Relative 256 words foreward, 255 backward
Indexed 32K
Indirect

32K - multi-level
32K
1 byte in instructions and

vectored with priority
2 lines or levels

3 levels - unlimited device support

52

TABLE IV (Continued)

Features Characteristics
Memory
Word Tlength 16 bits
Cycle time
Core (3 speeds) 980 nsec, 1200 nsec, 1600 nsec
Semiconductor 1200 nsec
Capacity
Minimum 1024 words
Maximum 32,768 words (262,144 with memory
banking)
- Increment 1024 or 2096 words
Parity optional
Interleaving optional
Banking optional
Input/Output
Maximum number of devices 248

Maximum transfer rates
Programmed

Concurrent block
Direct memory access

Universal Bus
Address lines
Data lines
Control lines

130,000 words/sec (via registers)
90,000 words/sec (direct to memory)
80,000 words/sec

1,020,000 words/sec

(1,666,000 with interleaving)

16 bidirectional
16 bidirectional
27 unidirectional

General Stack Processing.

Fifteen stack instructions a11ow the use

of any memory location as a stack pointer to maintain a last-in-first-

out (LIFO) stack anywhere else in memory. Any number of routines can

maintain any number of stacks with the possibility of USing any number

of separately maintained stack pointers that access the same physical

53

stack. Furthermore, arithmetic, logic, and compare operations on data
contained in stacks are also implemented separate from the conventional
set of instructions.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>